

S•PACT GmbH phone: +49 241 9569 9812
Burtscheider Str. 1 fax: +49 241 4354 4308
52064 Aachen e-mail: support@s-pact.de
Germany

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PEAXACT Application Server

User Manual
Version 3.7.2
2015-06-23

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

© COPYRIGHT 2015 by S-PACT GmbH

The software described in this document is furnished under a license agreement. The soft-
ware may be used only under the terms of the license agreement.

Software is based on MATLAB®. © 1984-2015 The MathWorks, Inc.

CONTENTS 3

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

CONTENTS
Contents .. 3

1 Quick Start .. 4

1.1 What is PEAXACT Application Server? .. 4

1.2 Getting Help .. 4

1.3 Installation .. 5

1.4 License Activation ... 6

1.5 Before You Start .. 8

2 Input and Output Files ... 9

2.1 License File .. 9

2.2 Log File .. 9

3 Application Programming Interface (API) .. 10

3.1 Introduction .. 10

3.2 Calling Conventions .. 10

3.3 Data Conversion Rules .. 15

3.4 MATLAB Utility Library .. 17

3.5 Class Reference .. 19

3.6 Programming Examples ... 34

4 Custom Interfaces .. 39

4.1 OPUS Process ... 39

4.2 HoloPro .. 43

5 Trouble Shooting .. 46

1 - QUICK START 4

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1 QUICK START

1.1 What is PEAXACT Application Server?
The PEAXACT Application Server gives third-party applications access to PEAXACT analysis
methods by means of an application programming interface (API). The API is available as:

 COM (Component Object Model)

 .NET assembly

Any application supporting one of these standards will be able to programmatically integrate
PEAXACT as a back-end analyzer for spectroscopic or chromatographic data.

In addition, the Application Server provides customized, ready-to-use interfaces for:

 OPUS Process from Bruker

 HoloPro from Kaiser Optical Systems

1.2 Getting Help

User Manual

This user manual documents a certain version of the PEAXACT Application Server. You can
find the version number and publication date on the title page.

We are continuously working on improving the manual. The latest document version is dis-
tributed as PDF file with each PEAXACT software update. The file is located in subdirectory
help of the PEAXACT installation directory.

Technical Support

The Technical Support can be contacted in different ways:

 E-mail to support@s-pact.de

 Web form at http://www.s-pact.de/support

Note: A subscription of S•PACT Software Maintenance Service (SMS) is required
to be eligible for technical support. The first year of SMS is included with new
PEAXACT product licenses.

Blog

The PEAXACT Blog was launched as a free source of information complementary to the user
manual. It contains tutorials, how-tos, and tips & tricks.
See: http://www.s-pact.de/blog

mailto:support@s-pact.de
http://www.s-pact.de/support
http://www.s-pact.de/blog

1 - QUICK START 5

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1.3 Installation

1.3.1 System Requirements
 Microsoft Windows XP SP2 or later (32 bit or 64 bit)

 Intel or AMD x86 or x64 CPU with SSE2 support (2 GHz recommended)

 1 GB of disk space (2 GB recommended)

 1 GB RAM (2 GB recommended)

1.3.2 Licensing
PEAXACT software is furnished under a license agreement. The software may be used only
under the terms of the license agreement.

The PEAXACT Application Server can be installed and operated on a given number of desig-
nated computers, provided it is only operated locally (i.e. not remotely). The number of sim-
ultaneous users is not limited. For the full and legally valid conditions please refer to the li-
cense agreement document.

1.3.3 Installation

Step 1: Before You Install

 Make sure your computer fulfills the system requirements.

 When upgrading an existing installation, visit http://www.s-pact.de/pe-
axact/whatsnew and read the upgrade notes and compatibility considerations.

 Make sure you have administrator privileges to perform the installation.

 Make sure your license is valid for the major version you want to install. If you do not
have a license yet, you can get a free trial license or purchase a license after installa-
tion.

Note: The PEAXACT version is a concatenation of three numbers
<major version>.<minor version>.<maintenance version>, e.g. 3.7.0.

Step 2: Install PEAXACT

 Download the latest PEAXACT Installer from http://www.s-pact.de/downloads

Note: The installer's filename is peaxactInstaller_<version>_<arch>.exe
<version> is the version number; <arch> is the software architecture (win32 or
win64). PEAXACT is available for 32 bit and 64 bit Windows platforms. The 32 bit
version also runs on 64 bit platforms, but not vice versa.

http://www.s-pact.de/peaxact/whatsnew
http://www.s-pact.de/peaxact/whatsnew
http://www.s-pact.de/downloads

1 - QUICK START 6

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: Only one installation of PEAXACT can exist at a time. Installing a newer ver-
sion will update the existing installation automatically. Installing a different ar-
chitecture or older version requires uninstallation of the existing version first.

Online Installation (Web Installation)

 If you are going to install PEAXACT on a computer which is connected to the internet,
you do not need to download any additional files.

 Run the PEAXACT Installer and follow the setup instructions. Additional runtime
packages are downloaded and installed automatically if detected missing.

Offline Installation

 If you are planning to install PEAXACT on a computer without internet access, you
have to download additional runtime packages in advance from
http://www.s-pact.de/peaxact/runtime

 Make sure to download runtime packages for the same architecture as the PEAXACT
installer (32 bit or 64 bit)

 Save all installer files without renaming them to one folder on your hard drive / flash
drive.

 Run the PEAXACT Installer file from this folder and follow the setup instructions.
Runtime packages are installed automatically if detected missing.

Step 3: After Installation

 After a new product installation, continue with License Activation.

 After upgrading an existing installation, check the upgrade notes at
http://www.s-pact.de/peaxact/whatsnew for further upgrade steps.

1.4 License Activation
License activation involves loading a valid license file. If you already have a license file, go
ahead to step 3.

Step 1: Find out the computer’s Host ID

Note: This step is required for purchased licenses only! For free licenses, proceed
with step 2.

For purchased licenses, activation associates the use of PEAXACT with designated computers
by means of a Host ID. The Host ID is a MAC address (format xx-xx-xx-xx-xx-xx) or the serial
number of volume c (format xxxx-xxxx) of the computer on which PEAXACT is installed.

 Click the Windows start menu and select
Programs > PEAXACT > Activate PEAXACT Application Server

 Wait until the License Activation Dialog is displayed

 Take the Host ID from the dialog window, then click Cancel.

http://www.s-pact.de/peaxact/runtime
http://www.s-pact.de/peaxact/whatsnew

1 - QUICK START 7

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 If you purchased a license for multiple computers, get one Host ID for each computer.

Note: You can also type getmac at the command prompt and use the first MAC ad-
dress as Host ID.

Step 2: Request license file

 Visit http://www.s-pact.de/peaxact/activation and use the web form to request a li-
cense file.

Step 3: Activate license

Licenses can be activated either programmatically using the setLicense() method, or inter-
actively using the License Activation Dialog. While setLicense() activates a license tempo-
rarily, the License Activation Dialog activates a license permanently by storing the license
filename in the Windows registry. The following applies to the License Activation Dialog.

 Click the Windows start menu and select
Programs > PEAXACT > Activate PEAXACT Application Server

 Wait until the License Activation Dialog is displayed

Note: The License Activation Dialog will also be shown if the Application Server is
accessed without a valid license.

License Activation Dialog

(1) License selection
(2) Status of activation

(3) Additional license information
(4) Apply and close

 Choose Import License… from the list (1) to browse for a valid license file. If the li-
cense is valid the license file is copied to the license directory.

1

2

3 4

http://www.s-pact.de/peaxact/activation

1 - QUICK START 8

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 Once a valid license is selected, you can click on the License Info button (3) to learn
more about the license or on the OK button (4) to accept the selection.

Per-machine license vs. per-user license
If you perform the activation with administrator privileges, licenses will be acti-
vated per-machine, i.e. for all Windows users. Otherwise, licenses will be acti-
vated per-user, i.e. for the logged on user. Per-machine licenses take prece-
dence over per-user licenses. Once a per-machine license is activated the Li-
cense Activation Dialog gets locked for regular users.

1.5 Before You Start

1.5.1 COM Component
Before you access the COM API for the first time you should test whether everything is in-
stalled correctly by running a diagnosis program. Click the Windows start menu and select
Programs > PEAXACT > Diagnosis Tool for PEAXACT Application Server.

The diagnosis program performs some tests and suggests possible solutions in case of prob-
lems. You have to fix all problems before you can use the COM API. Typical problems include:

 MATLAB Compiler Runtime (MCR) is not installed correctly

 Required DLL files are not registered correctly

 Platform-dependent problems (e.g. running 32 bit software instead of 64 bit)

You could run the diagnosis program at any time to check whether the interface still works
correctly and to reveal possible errors.

Note: During the test you may be prompted to activate a license.

1.5.2 .NET Component
The .NET component is a design-time assembly you would compile and link against when
building your own managed assemblies. Before you can use it you need to reference the as-
sembly in you Visual Studio project. In Visual Studio, right-click on a project, for example, and
click "Add References...". The assembly file is located at

INSTALLDIR\DLL\.NET\peaxact.dll

You also need to reference the MWArray assembly (located in the same directory) which de-
fines the MWArray data type. See Section 3.4.2 for further details.

Note: The .NET component requires Microsoft .NET Framework version 2.0 or
later to be installed on your computer.

1 - QUICK START 9

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2 INPUT AND OUTPUT FILES
Note: This manual uses the placeholder APPDATADIR to reference the directory for

user-specific application data. In Windows XP it typically is
%UserProfile%\Local Settings\Application Data\
S-PACT\PEAXACT Application Server
Since Windows Vista, it is
%LocalAppData%\S-PACT\PEAXACT Application Server

2.1 License File
The license file contains information about a license, e.g. the licensed release version. The
license can be set using the setLicense() method. If no valid license is set, the Windows reg-
istry is searched for a license when required. If still no valid license can be found, the user is
prompted to select a valid license file.

File Extension
*.lic PEAXACT License file

License Filenames in the Windows Registry
HKEY_LOCAL_MACHINE\S-PACT\PEAXACT Application Server\licenseSource
takes precedence over:
HKEY_CURRENT_USER\S-PACT\PEAXACT Application Server\licenseSource

License Directory
%ProgrammData%\S-PACT\PEAXACT Application Server

2.2 Log File
By default, PEAXACT writes information messages, warnings and errors to a log file. The ver-
bosity of the log file can be changed using the setLogger() method. If you have multiple ap-
plications using the Application Server, you should also use the setLogger() to change the
default filename.

Default Directory and Filename
APPDATADIR\peaxactAppServer.log

3 - APPLICATION PROGRAMMING INTERFACE (API) 10

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3 APPLICATION PROGRAMMING

INTERFACE (API)

3.1 Introduction
The PEAXACT Application Server is developed in MATLAB and is compiled with the MATLAB
compiler to either a COM DLL or a .NET assembly DLL. Despite the different software archi-
tecture, both DLLs expose identical classes and methods. All methods are fully documented
in subsection Class Reference using MATLAB function signatures. You will be able to trans-
late these function signatures to COM or .NET function calls with the information from sub-
sections Calling Conventions and Data Conversion Rules. You may also learn from Program-
ming Examples.

3.2 Calling Conventions
This Section describes how to translate MATLAB function signatures to COM and .NET func-
tion signatures. A detailed function documentation can be found in Section Class Reference.

3.2.1 COM Component
The following tables show the mapping of MATLAB function signatures to IDL code and ex-
emplarily to Microsoft Visual Basic 6.

Functions with inputs only (no output)

Signature Sample

MATLAB function foo(X1, X2, ...)

IDL HRESULT foo([in] VARIANT X1,

 [in] VARIANT X2,

 .

 .

);

VB 6 Sub foo(X1 As Variant, _

 X2 As Variant, _

 .

 .

)

VB 6 Example Dim com As Object

Dim X1 As Variant

' assign values

Set com = CreateObject("myComponent.myClass")

X1 = True

' provide all inputs

3 - APPLICATION PROGRAMMING INTERFACE (API) 11

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Signature Sample

Call com.foo(X1, "test")

' omit some inputs

Call com.foo(X1, Null)

The function inputs appear in the same order as they do on the right side of the MATLAB
function. All inputs are tagged as [in] parameters.

Note: In MATLAB, all inputs to functions are optional and may be present or omit-
ted from the function call. However, in IDL, function signatures are stricter. You
need to pass Null (or an equivalent) in order to omit input arguments from the
function call.

Functions with outputs

Signature Sample

MATLAB function [Y1, Y2, ...] = foo(X1, X2, ...)

IDL HRESULT foo([in] long nArgOut,

 [in,out] VARIANT* Y1,

 [in,out] VARIANT* Y2,

 .

 .

 [in] VARIANT X1,

 [in] VARIANT X2,

 .

 .

);

VB 6 Sub foo(nArgOut As Long, _

 Y1 As Variant, _

 Y2 As Variant, _

 .

 .

 X1 As Variant, _

 X2 As Variant, _

 .

 .

)

VB 6 Example Dim com As Object

Dim X1 As Variant

Dim Y1 As Variant, Y2 As Variant

' assign values

Set com = CreateObject("myComponent.myClass")

X1 = True

' provide all inputs and outputs

Call com.foo(2, Y1, Y2 , X1, "test")

'omit some outputs

Call com.foo(1, Y1, Null, X1, "test")

The first argument nArgOut is an [in] parameter of type long. It is the number of requested
output arguments. nArgOut could be smaller than the total number of possible output argu-
ments in which case MATLAB returns Null for all arguments > nArgOut.

3 - APPLICATION PROGRAMMING INTERFACE (API) 12

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Following the nArgOut parameter, the outputs are listed in the order they appear on the left
side of the MATLAB function, and are tagged as [in,out], meaning that they are passed (by
reference) in both directions.

Note: In MATLAB, all outputs from functions are optional, and may be present or
omitted from the function call. However, in IDL, function signatures are stricter.
You can use the nArgOut parameter to request a certain number of output argu-
ments and pass Null for output arguments > nArgOut in order to omit them from
the function call.

Functions with mutable inputs and outputs

Signature Sample

MATLAB function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL HRESULT foo([in] long nArgOut,

 [in,out] VARIANT* Y1,

 [in,out] VARIANT* Y2,

 .

 .

 [in,out] VARIANT* varargout,

 [in] VARIANT X1,

 [in] VARIANT X2,

 .

 .

 [in] VARIANT varargin);

VB 6 Sub foo(nArgOut As Long, _

 Y1 As Variant, _

 Y2 As Variant, _

 .

 .

 varargout As Variant, _

 X1 As Variant, _

 X2 As Variant, _

 .

 .

 varargin As Variant)

VB 6 Example Dim com As Object

Dim X1 As Variant

Dim varargin(1 To 2) As Variant

Dim Y1 As Variant, Y2 As Variant, Y3 AS Variant, Y4 As Variant

Dim varargout As Variant

' assign values

Set com = CreateObject("myComponent.myClass")

X1 = True

varargin(1) = 1.5

varargin(2) = "option A"

' provide all inputs and outputs

Call com.foo(4, Y1, Y2, varargout, X1, "test", varargin)

Y3 = varargout(0)

Y4 = varargout(1)

'omit some inputs and outputs

Call com.foo(1, Y1, Null, Null , X1, Null , Null)

3 - APPLICATION PROGRAMMING INTERFACE (API) 13

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

The optional varargin/varargout parameters are used by functions with mutable input/out-
put arguments. When present, the varargin/varargout parameters are always listed as the
last input parameters and the last output parameters. Both parameters are VARIANT arrays,
each element representing one additional input or output argument. The nArgOut parameter
also counts arguments which are collected by varargout.

All parameters other than nArgOut are passed as COM VARIANT types. Data Conversion lists
the rules for conversion between MATLAB arrays and COM VARIANTs.

3.2.2 .NET Component

All classes of the .NET API are organized in the namespace PEAXACT.

For each MATLAB function, the .NET component has overloaded methods to implement the
various forms of a generic MATLAB function call.

 A single output signature that assumes that only a single output is required and re-
turns the result in a single MWArray.

 A standard signature that specifies inputs of type MWArray and returns values as an
array of MWArray.

 A feval signature that includes both input and output arguments in the argument list
rather than returning outputs as a return value. Output arguments are specified first,
followed by the input arguments. This interface is not documented here. It is recom-
mended to use one of the other interfaces instead.

The following tables show the mapping of a generic MATLAB function signature to C#.

Single output interface

Typically you use the single output interface for MATLAB functions that return a single argu-
ment. You can also use the single output interface when you only require the first output of a
function or when you want to use the first output as the input to another function.

The single output API for a MATLAB function returns a single MWArray value Y1.

Signature Sample

MATLAB function [Y1, Y2, ...] = foo(X1, X2, ...)

C# public MWArray foo(MWArray X1, MWArray X2, ...)

The input arguments X1, X2, … are MWArray types or supported .NET primitive types.

Note: In MATLAB, all inputs to functions are optional and may be present or omit-
ted from the function call. The API provides several forms of the single output
interface for different numbers of inputs.

3 - APPLICATION PROGRAMMING INTERFACE (API) 14

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Standard interface

Typically you use the standard interface for MATLAB functions that return multiple output
values.

The standard calling interface returns an array of MWArray objects rather than a single array
object.

Signature Sample

MATLAB function [Y1, Y2, ...] = foo(X1, X2, ...)

C# public MWArray[] foo(int numArgsOut, MWArray X1, MWArray X2, ...)

The first argument numArgsOut is an integer. It is the number of requested output arguments.
numArgsOut must be smaller or equal to the total number of possible output arguments. Out-
puts Y1, Y2, … are returned as the elements of an array of MWArrays.

Mutable inputs and outputs

Some MATLAB functions specify an optional varargin and/or varargout parameter for muta-
ble input/output arguments. When present, the varargin/varargout parameters are always
listed as the last input parameters and the last output parameters. Both parameters are ar-
rays, each element representing one additional input or output argument.

Signature Sample

MATLAB function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

C# (single out-
put interface)

public MWArray foo(MWArray X1, MWArray X2, ...,

 params MWArray[] varargin)

C# (standard
interface)

public MWArray[] foo(int numArgsOut, MWArray X1, MWArray X2, ...,

 params MWArray[] varargin)

When the varargin parameter is present in the MATLAB function, you can specify optional
inputs: list the optional inputs, or put them in an MWArray[] argument, placing the array last
in the argument list.

When the varargout parameter is present in the MATLAB function, you can use the standard
calling interface to get all output arguments returned as an array of MWArrays, including those
collected by varargout.

3 - APPLICATION PROGRAMMING INTERFACE (API) 15

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3.3 Data Conversion Rules
This section describes the data conversion rules. When a method is invoked on the PEAXACT
COM component or .NET component, the input parameters are converted to MATLAB inter-
nal array format and passed to the compiled MATLAB function. When the function exits, the
output parameters are converted back.
In MATLAB, a matrix is the basic building block for all of the common data types. These in-
clude empty matrices (matrices with at least one dimension equal to zero), scalars (1-by-1
matrices), vectors (matrices with only one row or column) and regular 2D matrices.

3.3.1 COM Component
The COM client passes all input and output arguments in the compiled MATLAB functions as
type VARIANT. The COM VARIANT type is a union of several simple data types. A type VARIANT
variable can store a variable of any of the simple types, as well as arrays of any of these values.

Conversion from COM to MATLAB

VARIANT Type
Corresponding
C/C++ Type

Corresponding
Visual Basic Type

MATLAB
Data Type

VT_EMPTY - - empty double

VT_BOOL VARIANT_BOOL(1) Boolean logical

VT_R8 Double Double double

VT_BSTR BSTR(1) String char

VT_VARIANT|VT_ARRAY VARIANT[](1) Variant() cell

Others Not used

(1) Denotes Windows specific type. Not part of standard C/C++.

Conversion from MATLAB to COM

MATLAB
Data Type

VARIANT Type
for Empty Data

VARIANT Type
for Scalar Data

VARIANT Type
for Array Data

logical VT_EMPTY VT_BOOL VT_BOOL|VT_ARRAY

double VT_EMPTY VT_R8 VT_R8|VT_ARRAY

char VT_EMPTY
VT_BSTR with length = 1 VT_BSTR with a length > 1

cell VT_EMPTY
VARIANT with a type con-
forming to the conver-
sion rule for the
MATLAB data type of
the cell contents

VARIANT of type
VT_VARIANT|VT_ARRAY with the
type of each array member
conforming to the conversion
rule for the MATLAB data type
of the corresponding cell

3 - APPLICATION PROGRAMMING INTERFACE (API) 16

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

MATLAB
Data Type

VARIANT Type
for Empty Data

VARIANT Type
for Scalar Data

VARIANT Type
for Array Data

struct VT_EMPTY A MATLAB struct array is converted to an MWStruct object
(see MATLAB Utility Library). This object is passed as a
VT_DISPATCH type.

Others Not used Not used Not used

Note: The COM client returns vectors and matrices of higher dimension as
VT_ARRAY. Indexing into these VT_ARRAYs is one based rather than zero based.

Note: Whenever a method of the Application Server returns arguments of variable
dimensions, you should test for all cases: empty, scalar, or array.

3.3.2 .NET Component
To support data conversion between managed types and MATLAB types, the MATLAB Utility
Library provides a set of data conversion classes derived from the abstract class, MWArray.
When you invoke a method on a component, the input and output parameters are derived
types of MWArray.

Conversion from .NET to MATLAB

.NET Type (Class) .NET Type (Native) MATLAB Data Type

MWLogicalArray System.Boolean logical

MWNumericArray System.Double double

MWCharArray System.String char

MWCellArray - cell

Others Not used Not used

To pass parameters, you can either instantiate one of the MWArray subclasses explicitly, or, for
managed types System.Double and System.String, rely on implicit data conversion.

Note: MWArrays have 2 dimensions and indexing is one based rather than zero
based. Implicit conversion of 1D native arrays results in MWArrays with the first
dimension being 1 (row vector).

Conversion from MATLAB to .NET

MATLAB Data Type .NET Type (Class) .NET Type (Native)

logical MWLogicalArray System.Boolean

double MWNumericArray System.Double

char MWCharArray System.String

cell MWCellArray -

3 - APPLICATION PROGRAMMING INTERFACE (API) 17

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

MATLAB Data Type .NET Type (Class) .NET Type (Native)

struct MWStructArray -

Others Not used Not used

All variables returned from MATLAB are represented as instances of the appropriate MWArray
subclass. For example, a MATLAB cell array is returned as an MWCellArray object.

Note: MWArrays have 2 dimensions and indexing is one based rather than zero
based. In the special case of empty arrays at least one dimension is 0; for scalars
both dimensions are 1.

 Use ToArray() method in order to convert an MWLogicalArray, MWNumericArray, or
MWCharArray to a 2-dimensional native array.

 Use ToScalarInteger(), ToScalarDouble(), etc. in order to convert an MWNumericArray
to a native scalar.

 Use ToString() in order to convert an MWArray to a 1-dimensional native string.

 Conversion of an MWCellArray requires element-wise conversion.

 Conversion of an MWStructArray requires field-wise conversion.

3.4 MATLAB Utility Library

3.4.1 COM Component
The MWComUtil type library includes helper classes for array processing and data conver-
sion. In particular, the library provides two classes MWStruct and MWField for processing the
MATLAB struct data type returned by some PEAXACT methods.

Note: The MWComUtil type library is contained in the file mwcomutil.dll which is
installed and registered during installation of the MATLAB Compiler Runtime
(MCR). By default, the file is located at
MCR_INSTALL_DIRECTORY\v714\runtime\win32|win64

MWStruct Class

The MWStruct class holds a MATLAB struct type. The struct is a container using named fields
for storing other data types.

Property Item([fieldName]) As MWField
The Item property is the default property of the MWStruct class. This property is
used to get/set a particular field in the structure.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the struc-
ture.

3 - APPLICATION PROGRAMMING INTERFACE (API) 18

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Property FieldNames As Variant
The read-only FieldNames property returns an array of length NumberOfFields that
contains the field names of the elements of the structure.

MWField Class

The MWField class holds a single field reference in an MWStruct object.

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field's value (read/write). The Value property is the default property of
the MWField class. The value of a field can be any type that is coercible to a Variant,
as well as object types.

Example: Processing a MATLAB struct type in Visual Basic 6

Note: Before using MWStruct and MWField classes, you must make explicit reference
to the MWComUtil 7.14 Type Library in your Microsoft Visual Basic IDE.

Sub foo ()

 Dim x As MWStruct

 Dim y As Variant

 Dim FieldName As Variant

 On Error Goto Handle_Error

 '

 '... Call a method that returns a scalar MWStruct in x

 '

 For Each FieldName In x.FieldNames

 y = x.Item(FieldName).Value ' or simply y = x(FieldName).Value

 ' ... Check whether y is nothing (empty), scalar, or an array

 ' ... Do something with y

 Next

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

3.4.2 .NET Component
The MWArray assembly is a helper library providing data conversion classes. You reference this
assembly and specify the namespace
MathWorks.MATLAB.NET.Arrays
in your managed application to convert native arrays to MATLAB arrays and vice versa. The
assembly is located at

INSTALLDIR\DLL\.NET\MWArray.dll

3 - APPLICATION PROGRAMMING INTERFACE (API) 19

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

MWArray Class

The data conversion classes are built as a class hierarchy that represents the major MATLAB
array types. The root of the hierarchy is the MWArray abstract class. The MWArray class has the
following subclasses representing the major MATLAB types:

 MWNumericArray

 MWLogicalArray

 MWCharArray

 MWCellArray, and

 MWStructArray

Note: As in MATLAB, MWArrays have 2 dimensions and indexing is one based ra-
ther than zero based.

MWArray and its derived classes provide the following functionality:

 Constructors and destructors to instantiate and dispose of MATLAB arrays

 Properties to get and set the array data

 Indexers to support a subset of MATLAB array indexing

 Implicit and explicit data conversion operators

 General methods

Note: For complete reference information about the MWArray class hierarchy, see
the MWArray Class Library Reference, available online only at
http://www.mathworks.de/help/releases/R2010b/toolbox/dotnet-
builder/MWArrayAPI/HTML/index.html

3.5 Class Reference
This Section describes all methods of the PEAXACT Application Server API. Function signa-
tures are noted in MATLAB syntax

function [out1, out2, ...] = functionName(in1, in2, ...)

These signatures can be translated to COM and .NET function calls according to the Calling
Conventions and Data Conversion Rules.

3.5.1 Class Design
The API exposes two classes:

 Class Toolbox provides analysis methods of PEAXACT Toolbox

 Class Chrom provides analysis methods of PEAXACT Chrom

Both classes have some methods in common, e.g. for initialization.

http://www.mathworks.de/help/releases/R2010b/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html
http://www.mathworks.de/help/releases/R2010b/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

3 - APPLICATION PROGRAMMING INTERFACE (API) 20

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Singleton Class Instance

The Application Server API implements a design pattern which enforces each applica-
tion/process to use a single class instance only. Although it is possible to create multiple in-
stances of the same class, internally all instances created by the same process will share the
same workspace.

The benefit of this design is an efficient memory usage. Also, it enables you to initialize the
license and logger only once per process.

In order to perform multiple parallel analyses, the Toolbox class provides session domains.
Each session is an isolated environment where analyses execute. The Chrom class is a sim-
plistic class which doesn’t need sessions.

Note: It is recommended to use a single instance of the Toolbox or Chrom class
only. If you used multiple instances they would effectively behave like clones.

Note: It is recommended NOT to use instances of both the Toolbox and Chrom
class within the same process.

Note: It is recommended NOT to use both the COM API and .NET API within the
same process.

Exception Handling

The API is designed to not throw any exceptions. Instead, most methods return a Boolean
variable isOK which is false if an error occurred while executing the method. In that case,
getLastErrorMessage() can be called to get the corresponding error message. The calling
function should be responsible for recovering from this state.

3.5.2 Common Methods
The following methods are members of both the Toolbox class and Chrom class.

initialize()
function [isOK] = initialize()

Initialize the Application Server.
Call this method in order to explicitly initialize the Application Server. Otherwise,
this method is called implicitly when required. However, explicit initialization is
recommended to determine whether it was successful. Initialization covers:

 Creation of a default file logger if none exists. Use setLoger() before or after
initialize() to customize the logger.

 License validation as well as license activation. In case no valid license is found,
the License Activation Dialog is shown for the user to load a license interac-
tively. Use setLicense() before initialize() to set a license programmatically
and prevent showing the license activation dialog.

 Creation of a new empty session.

3 - APPLICATION PROGRAMMING INTERFACE (API) 21

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

isOK (scalar logical) is false in case of errors.

Note: Calling this method multiple times has no effect when initialization was suc-
cessful before.

isInitialized()

function [isOK] = isInitialized()
Query status of initialization
isOK (scalar logical) is true (false) if the Application Server is (not) initialized.

getLastErrorMessage()

function [message] = getLastErrorMessage()
Get message of last caught exception.
message (string) is the text of the last caught exception. It typically changes when
the isOK return value of other methods is false.

Note: Calling this method also resets the last error message to an empty string.

getLogger()

function [logLevel, logFilename] = getLogger()
Get logging details.
logLevel (string) is the current state of the logging level.
logFilename (string) is the current log filename.
If no logger is set, logLevel is "OFF" and logFilename is an empty string.

setLicense()

function [isOK] = setLicense()
Activate license.
If no license has been set so far (by either initialize() or any of the setLicense()
methods) the Windows registry is searched for a permanently activated license.
isOK (scalar logical) is true if a valid license could be found and false if not.

function [isOK] = setLicense(filename)
Activate specific license.
This method gives you full control over the license to be used. It should be called
before initialize(). However, it can be called anytime to switch the license.
filename (string) is the fully qualified filename of a PEAXACT license.
isOK (scalar logical) is false if the specified license is invalid.

function [isOK] = setLicense(filename, OEM_Key)
Activate OEM license.
OEM licenses are available for third-party software developers only who integrate
PEAXACT with their software and re-sell it as part of their own products to end-
customers.

3 - APPLICATION PROGRAMMING INTERFACE (API) 22

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

filename (string) is the fully qualified filename of a PEAXACT OEM license.
OEM_Key (string) is a key code which activates the OEM license.
isOK (scalar logical) is false if the specified license is invalid.

setLogger()

function [isOK] = setLogger()
Create default file logger if none exists.
If no file logger exists, a new one is created with log level INFO. Otherwise, this
method does nothing.
isOK (scalar logical) is false if no logger could be created which means that
logging is disabled.

function [isOK] = setLogger(logLevel)
Create new file logger or change existing logger.
If no file logger exists, a new one is created with log level logLevel. If a file logger
does exist, its log level is updated to logLevel.
logLevel (string) can be one of the following strings: ALL or DEBUG,
EXCEPTION, INFO, WARNING, SEVERE, OFF.
isOK (scalar logical) is false if no logger could be created or if logLevel is inva-
lid.

function [isOK] = setLogger(logLevel, logFilename)
Create new logger or change existing logger.
If no file logger exists, a new one is created with log level logLevel and log file
logFilename. If a file logger does exist, its log level is updated and its file is moved
to logFilename.
logLevel (see above)
logFilename (string) is the full path and filename of the log file.
isOK (scalar logical) is false if no logger could be created or if the log file could
not be moved.

Note: If this method is not called explicitly, a file logger is created implicitly with
logLevel = INFO and a default logFilename.

Note: If no file logger exists when this method is called (explicitly or implicitly) but
the log file could not be opened, logLevel will be set to OFF.

terminate()

function [isOK] = terminate()
Uninitialize the Application Server.
Calling this method explicitly terminates the Application Server and returns
whether termination was successful. If this method is not called explicitly, termi-
nation is done implicitly when required. Termination covers:

 Removal of the file logger (if any), including closing of the log file

 Deactivation of the license

 Removal of all sessions and runtime data
isOK (scalar logical) is true (false) if termination was (not) successful.

3 - APPLICATION PROGRAMMING INTERFACE (API) 23

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: It is not recommended to call any other method after terminate() because
this may implicitly re-initialize the interface.

testFunctionIO()

function [isOK, outputStruct, varargout] = testFunctionIO(x1, x2, varargin)
This function provides a testing platform for the calling conventions and data con-
version rules of MATLAB functions. For any input argument you pass, the function
displays a message box with details about the argument's type, size, and value
from the MATLAB point of view. Output arguments have predefined values. In
particular, outputStruct is a MATLAB struct with fields of all kinds of matrix di-
mensions and data types.
x1 (any size and type) optional first input, default value = "default x1"
x2 (any size and type) optional second input, default value = "default x2"
varargin (any size, cell) optional further inputs, collected in a cell array
isOK (scalar logical), constant = true
outputStruct (scalar struct) is a struct with fields holding predefined values of
all kinds of matrix dimensions and data types. The name of each field also de-
scribes the data type of the field's value. The following fields exist:

 emptyLogical, emptyDouble, emptyChar, emptyCell, emptyStruct

 scalarLogical, scalarDouble, scalarChar, scalarCellOfScalarLogical,
scalarCellOfScalarDouble, scalarCellOfScalarChar

 vectorLogical, vectorDouble, vectorChar, vectorCellOfScalarLogical,
vectorCellOfScalarDouble, vectorCellOfScalarChar,
vectorCellOfVectorLogical, vectorCellOfVectorDouble,
vectorCellOfVectorChar, vectorCellOfVectorCellOfStrings

 matrixLogical, matrixDouble, matrixChar, matrixCellOfScalarDouble
varargout (size of varargin cell) is a copy of varargin.

3.5.3 Toolbox Class Methods

activateSession()

function [isOK, activeSessionID] = activateSession()
function [isOK, activeSessionID] = activateSession(sessionID)

Make session active.
Methods of class Toolbox implicitly operate on the active session. If you have mul-
tiple sessions you can use this method to switch between them.
sessionID (string) is the unique identifier of a session to be activated. If missing
or empty, the active session is not changed.
isOK (scalar logical) is false in case of errors.
activeSessionID (string) is the unique identifier of the active session (after
switching) or empty if isOK is false.

3 - APPLICATION PROGRAMMING INTERFACE (API) 24

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: If you plan to use parallel sessions, call activateSession() once without in-
puts after initialize() in order to retrieve the session ID of the initial session.

newSession()

function [isOK, activeSessionID] = newSession()
Add a new session and make it the active one.
A session is a container for models and data sets. By default, the Toolbox instance
already has one initial session. Use this method to create parallel sessions.
isOK (scalar logical) is false in case of errors.
activeSessionID (string) is the unique identifier of the new session or empty if
isOK is false. You should keep track of session IDs in order to switch between ses-
sions with activateSession() or remove sessions with removeSession().

removeSession()

function [isOK, activeSessionID] = removeSession(sessionID)
Remove a session.
sessionID (string) is the unique identifier of a session to be removed. If it is the
active session, the next session will be activated. If there are no further sessions, a
new session will be added such that always at least one session exists.
isOK (scalar logical) is false in case of errors.
activeSessionID (string) is the unique identifier of the active session (after re-
moval) or empty if isOK is false.

addDataSet()

function [isOK] = addDataSet(URI)
function [isOK] = addDataSet(URI, varargin)

Add data set with optional additional features.
URI (string) is the full path, filename, and access ID of a sample in a data file. You
cannot add the same URI more than once. Trying so will simply update the existing
data set.
Alternative 1: varargin = missing or empty
If varargin is omitted from the function call or empty, the data set is added with-
out any additional features. xy-values will be read from the data file.
Alternative 2: varargin = {xData, yData}
Alternative 3: varargin = {..., key1, value1, key2, value2, ...}
Alternative 4: varargin = {..., "clear"}
xData and yData (*-by-1 double) are optional column vectors of x-values and
y-values to be used instead of reading xy-values from a data file. In this case URI
can be a dummy filename. If provided, xData and yData must be the first two ele-
ments of varargin.
key (string) and value (scalar double) are the name and value of an additional
feature added to the data set. You can optionally provide any number of key/value
pairs.

3 - APPLICATION PROGRAMMING INTERFACE (API) 25

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

"clear" (string literal) is an optional switch. If provided, all previously added
data sets (except any which matches URI) will be removed before adding the new
data set. Option clear must be the last element of varargin.
isOK (scalar logical) is false in case of errors.

addModel()

function [isOK] = addModel(fullFilename)
Add master model from file.
fullFilename (string) is the full path and filename of

 either a PEAXACT model file,

 or a PEAXACT session file containing one or more models
created and saved with PEAXACT Toolbox. In case of a model file, a single model
is added. In case of a session file, all models contained in the session will be added.
Note that models taken from a session will get a new unique filename which is
composed of the session filename and the model name. This filename is just used
as an identifier (models do not have to be present as model files on the hard disk).
The unique identifier enables you to load models with identical names from mul-
tiple sessions and still be able to distinguish between them. Use
getModelFilenames() to get a list of all added model filenames.
isOK (scalar logical) is false in case of errors.

analysisPeakSearch()

function [isOK, outputStruct] = analysisPeakSearch()
function [isOK, outputStruct] = analysisPeakSearch(minPeakHeight)

Perform Peak Search of all added data sets using data pretreatment settings of
the first added master model (if any).
Alternative 1: minPeakHeight = missing or empty
If minPeakHeight is omitted from the function call or empty, the minimum peak
detection height is estimated automatically and individually for each data set.
Alternative 2: minPeakHeight (scalar double) is the minimum height for peaks to
get detected, while peaks smaller than minPeakHeight are ignored.
isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 minPeakHeight (nDataSets-by-1 double) is the matrix of actually used peak
detection heights. Values are equal to input argument minPeakHeight if pro-
vided.

 peakPositionIndices (nDataSets-by-1 cell of *-by-1 double) is a cell array
where each element is a column vector of indices of xData at which peaks are
found.

3 - APPLICATION PROGRAMMING INTERFACE (API) 26

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 peakPositions (nDataSets-by-1 cell of *-by-1 double) is a cell array where
each element is a column vector of x-values at which peaks are found, i.e.
peakPositions = xData(peakPositionIndices).

 peakIntensities (nDataSets-by-1 cell of *-by-1 double) is a cell array where
each element is a column vector of y-values at the peak positions, i.e.
peakIntensities = yData(peakPositionIndices).

 xData (nDataSets-by-1 cell of *-by-1 double) is a cell array where each
element is a column vector of a sample's x-values.

 yData (nDataSets-by-1 cell of *-by-1 double) is a cell array where each
element is a column vector of a sample's y-values.

analysisMCR()

function [isOK, outputStruct] = analysisMCR(nComponents)
function [isOK, outputStruct] = analysisMCR(nComponents, varargin)

Perform Multivariate Curve Resolution of all added data sets using data pretreat-
ment settings of the first added master model (if any).
nComponents (scalar double) is the number of unknown components which
should be identified from the samples' y-data.
Alternative 1: varargin = missing or empty
If varargin is omitted from the function call or empty, MCR is performed with de-
fault settings. This also re-uses previous results for initialization of concentrations
(C0) when called repeatedly.
Alternative 2: varargin = {key1, value1, key2, value2, ...}
key (string) and value (class and size differs) are the name and value of
optional settings for MCR. The following keys are recognized:

 C0 (empty or nDataSets-by-nComponents double) is an optional matrix of initial
concentrations. If C0 is empty (Null), concentrations are initialized implicitly
(reset). This is different from omitting the argument which would initialize C0
with previous results (if available).

 toleranceRMSE (1-by-1 double) is an optional criterion for stopping MCR when
progress of iterations drops below the tolerance (default = 1e-5).

 nIterations (1-by-1 double) is an optional criterion for stopping MCR after a
maximum number of iterations is reached (default = 100).

 nUnsuccessfulAttempts (1-by-1 double) is an optional criterion for stopping
MCR after a maximum number of unsuccessful iterations (default = 20).

 isNonnegativeC (1-by-1 logical) is an optional switch to enable or disable the
non-negativity constraint of concentrations (default = false).

 isNonnegativeS (1-by-1 logical) is an optional switch to enable or disable the
non-negativity constraint of component spectra (default = false).

 isUnimodalC (1-by-1 logical) is an optional switch to enable or disable the
unimodality constraint of component concentrations (default = false).

 isClosureC (1-by-1 logical) is an optional switch to enable or disable the
closure constraint of component concentrations (default = false).

isOK (scalar logical) is false in case of errors.

3 - APPLICATION PROGRAMMING INTERFACE (API) 27

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 nComponents (scalar double) is the number of components being identified
from the data. This simply is a copy of the input argument.

 componentNames (1-by-nComponents cell of strings) is a cell array of auto-
matically generated names for each identified component.

 S (*-by-nComponents double) is a matrix of component spectra identified from
the samples' y-data. The matrix has as many rows as xData.

 C (nDataSets-by-nComponents double) is a matrix of component concentra-
tions for each data set identified from the samples' y-data.

 RMSResiduals (nDataSets-by-1 double) is a vector of root mean square resid-
uals for each sample. Residuals are calculated by yData - SCT.

 R2 (scalar double) is the fraction of variance in yData explained by SCT.

 xData (*-by-1 double) is column vector of x-values at which S is calculated.

analysisHMFA()

function [isOK, outputStruct] = analysisHMFA(nUnknownComponents)
function [isOK, outputStruct] = analysisHMFA(nUnknownComponents, varargin)

Perform Hard Modeling Factor Analysis of all added data sets using the first added
master model which contains a hard model.
nUnknownComponents (scalar double) is the number of unknown components
which should be identified from the samples' y-data.
Alternative 1: varargin = missing or empty
If varargin is omitted from the function call or empty, HMFA is performed with
default settings.
Alternative 2: varargin = {key1, value1, key2, value2, ...}
key (string) and value (class and size differs) are the name and value of
optional settings for HMFA. The following keys are recognized:

 isClosureC (1-by-1 logical) is an optional switch to enable or disable the
closure constraint of component concentrations (default = false).

isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 nComponents (scalar double) is the sum of known components from the hard
model and identified unknown components (nUnknownComponents) from the
data.

 componentNames (1-by-nComponents cell of strings) is a cell array of compo-
nent names taken from the hard model (if any) as well as automatically gener-
ated names for each identified component (if any).

3 - APPLICATION PROGRAMMING INTERFACE (API) 28

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 S (*-by-nComponents double) is a matrix of component spectra identified from
the samples' y-data. The matrix has as many rows as xData.

 C (nDataSets-by-nComponents double) is a matrix of component concentra-
tions for each data set identified from the samples' y-data.

 RMSResiduals (nDataSets-by-1 double) is a vector of root mean square resid-
uals for each sample. Residuals are calculated by yData - SCT.

 R2 (scalar double) is the fraction of variance in yData explained by SCT.

 xData (*-by-1 double) is column vector of x-values at which S is calculated.

analysisComponentFitting()

function [isOK, outputStruct] = analysisComponentFitting()
function [isOK, outputStruct] = analysisComponentFitting(componentIdentifier)

Perform Component Fitting of all added data sets using all added models which
contain a hard model.
Alternative 1: componentIdentifier = missing or empty
If componentIdentifier is omitted from the function call or empty, results are re-
turned for all hard model components contained in all added master models.
Alternative 2: componentIdentifier = componentNames
componentNames (1-by-* cell of strings) is a cell array of hard model component
names for which results should be returned. Use getComponentNames() to get a list
of available names. Caution: If componentNames contains names that exist in more
than one hard model, results are only returned for the last matching component.
Use Alternative 3 in this case.
Alternative 3: componentIdentifier = componentIndices
componentIndices (1-by-* double) is a vector of hard model component indices
for which results are returned. Indices correspond to names returned by
getComponentNames().
isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 nComponents (scalar double) is the number of components for which weights
are returned.

 componentNames (1-by-nComponents cell of strings) is a cell array of hard
model component names for which weights are returned.

 componentIndices (1-by-nComponents double) is a vector of hard model com-
ponent indices for which weights are returned.

 w (nDataSets-by-nComponents double) is a matrix of component weights for all
processed data sets and for all requested hard model components.

3 - APPLICATION PROGRAMMING INTERFACE (API) 29

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

analysisIntegration()

function [isOK, outputStruct] = analysisIntegration()
function [isOK, outputStruct] = analysisIntegration(integrationRangeIdentifier)

Perform Integration of all added data sets using all added models which contain
an integration model.
Alternative 1: integrationRangeIdentifier = missing or empty
If integrationRangeIdentifier is omitted from the function call or empty, results
are returned for all integration ranges contained in all added master models.
Alternative 2: integrationRangeIdentifier = integrationRangeNames
integrationRangeNames (1-by-* cell of strings) is a cell array of integration
range names for which results should be returned. Use
getIntegrationRangeNames() to get a list of available names. Caution: If
integrationRangeNames contains names that exist in more than one integration
model, results are only returned for the last matching integration range. Use Al-
ternative 3 in this case.
Alternative 3: integrationRangeIdentifier = integrationRangeIndices
integrationRangeIndices (1-by-* double) is a vector of integration range indices
for which results are returned. Indices correspond to names returned by
getIntegrationRangeNames().
isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 nIntegrationRanges (scalar double) is the number of integration ranges for
which peak areas are returned.

 integrationRangeNames (1-by-nIntegrationRanges cell of strings) is a cell
array of integration range names for which peak areas are returned.

 integrationRangeIndices (1-by-nIntegrationRanges double) is a vector of in-
tegration range indices for which peak areas are returned.

 A (nDataSets-by-nIntegrationRanges double) is a matrix of calculated peak
areas for all processed data sets and for all requested integration ranges.

analysisPrediction()

function [isOK, outputStruct] = analysisPrediction()
function [isOK, outputStruct] = analysisPrediction(featureIdentifier)

Perform Prediction of all added data sets using all added models which contain a
calibration model.
Alternative 1: featureIdentifier = missing or empty
If featureIdentifier is omitted from the function call or empty, results are re-
turned for all calibrated features contained in all added master models.
Alternative 2: featureIdentifier = featureNames
featureNames (1-by-* cell of strings) is a cell array of calibrated feature names
for which results should be returned. Use getCalibratedFeatureNames() to get a

3 - APPLICATION PROGRAMMING INTERFACE (API) 30

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

list of available names. Caution: If featureNames contains names that exist in more
than one calibration model, results are only returned for the last matching feature.
Use Alternative 3 in this case.
Alternative 3: featureIdentifier = featureIndices
featureIndices (1-by-* double) is a vector of feature indices for which results
should be returned. Indices correspond to names returned by
getCalibratedFeatureNames().
isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets.

 nFeatures (scalar double) is the number of calibrated features for which pre-
dicted values are returned.

 featureNames (1-by-nFeatures cell of strings) is a cell array of feature
names for which predicted values are returned.

 featureIndices (1-by-nFeatures double) is a vector of feature indices for
which predicted values are returned.

 x (nDataSets-by-nFeatures double) is a matrix of predicted values for all pro-
cessed data sets and for all requested features.

 RMSResiduals (nDataSets-by-nFeatures double) is a matrix of root mean
square (RMS) spectral residuals. The matrix has identical columns for features
predicted by the same IHM model. The matrix contains NaN elements for fea-
tures predicted by Peak Integration models.

 RMSResidualsOutlierPValue (nDataSets-by-nFeatures double) is a matrix of
probability values (p-values) for each spectral residuals being an outlier. The
matrix has identical columns for features predicted by the same IHM model.
The matrix contains NaN elements for features predicted by Peak Integration
models.

 mahalanobisDistance (nDataSets-by-nFeatures double) is a matrix of ma-
halanobis distances. The matrix contains NaN elements for features not pre-
dicted by PLS models.

 mahalanobisDistanceOutlierPValue (nDataSets-by-nFeatures double) is a
matrix of probability values (p-values) for each distance being an outlier. The
matrix contains NaN elements for features not predicted by PLS models.

getCalibratedFeatureNames()

function [featureNames] = getCalibratedFeatureNames()
Get names of calibrated features from all added calibration models.
featureNames (1-by-* cell of strings) is a cell array of available calibrated fea-
ture names, ordered as they appear in calibration models of added master models.
The cell array is empty if no calibration models can be found or in case of errors.

3 - APPLICATION PROGRAMMING INTERFACE (API) 31

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Any combination of names in featureNames can be passed as input to
analysisPrediction(). However, it is recommended to get indices of these names
from the order of featureNames and then pass indices to analysisPrediction() be-
cause this is unambiguous in case of identical names.

getComponentNames()

function [componentNames] = getComponentNames()
Get names of non-empty component models from all added hard models.
componentNames (1-by-* cell of strings) is a cell array of available component
model names, ordered as they appear in hard models of added master models.
Note: Component models without peaks are ignored! The cell array is empty if no
hard models can be found or in case of errors.

Any combination of names in componentNames can be passed as input to
analysisComponentFitting(). However, it is recommended to get indices of these
names from the order of componentNames and then pass indices to
analysisComponentFitting() because this is unambiguous in case of identical
names.

getIntegrationRangeNames()

function [integrationRangeNames] = getIntegrationRangeNames()
Get names of integration ranges from all added integration models.
integrationRangeNames (1-by-* cell of strings) is a cell array of available com-
ponent model names, ordered as they appear in integration models of added mas-
ter models. The cell array is empty if no integration models can be found or in case
of errors.

Any combination of names in integrationRangeNames can be passed as input to
analysisIntegration(). However, it is recommended to get indices of these
names from the order of integrationRangeNames and then pass indices to
analysisIntegration() because this is unambiguous in case of identical names.

getDataSetURIs()

function [URIs] = getDataSetURIs()
Get URIs of added data sets.
URIs (*-by-1 cell of strings) is a cell array of URIs of all added data sets (see
addDataSet()). The cell array is empty if no data sets are added or in case of errors.

getModelFilenames()

function [fileNames] = getModelFilenames()
Get fileNames of added master models.

3 - APPLICATION PROGRAMMING INTERFACE (API) 32

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

fileNames (1-by-* cell of strings) is a cell array of filenames of all added master
models (see addModel()). The cell array is empty if no models are added or in case
of errors.

getModelInfo()

function [infoStruct] = getModelInfo(modelIndex)
function [infoStruct] = getModelInfo(modelFilename)

Get information about added master model
modelIndex (scalar double) is the index of a currently added master model. The
index must be in between 1 and nModels.
modelFilename (string) is the full path and name of an added master model. The
filename must match any name returned by getModelFilenames().
infoStruct (scalar struct) is a struct with fields:

 filename (string) is the filename of the added model.

 description (string) is a free text provided by the creator of the model. The
text is intended to describe the model but it may contain any kind of infor-
mation. The text may contain line breaks.

 nIntegrationRanges (scalar double) is the number of integration ranges con-
tained in the model.

 nComponents (scalar double) is the number of non-empty hard model com-
ponents contained in the model.

 nCalibratedFeatures (scalar double) is the number of calibrated features
contained in the model.

 integrationRangeNames (1-by-* cell of strings) is a cell array as returned
by getIntegrationRangeNames().

 componentNames (1-by-* cell of strings) is a cell array as returned by
getComponentNames().

 featureNames (1-by-* cell of strings) is a cell array as returned by
getCalibratedFeatureNames().

nDataSets()

function [N] = nDataSets()
Get number of added data sets.
N (scalar double) is the number of currently added data sets.

nModels()

function [M] = nModels()
Get number of added models.
M (scalar double) is the number of currently added master models.

removeDataSet()

function [isOK] = removeDataSet(dataSetIndex)

3 - APPLICATION PROGRAMMING INTERFACE (API) 33

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

function [isOK] = removeDataSet(dataSetURI)
Remove data set.
dataSetIndex (scalar double) is the index of a currently added data set to be re-
moved. The index must be in between 1 and nDataSets.
dataSetURI (string) is the URI of an added data set. The URI must match any
name returned by getDataSetURIs ().
isOK (scalar logical) is false in case of errors.

removeModel()

function [isOK] = removeModel(modelIndex)
function [isOK] = removeModel(modelFilename)

Remove model
modelIndex (scalar double) is the index of a currently added master model to be
removed. The index must be in between 1 and nModels.
modelFilename (string) is the full path and name of an added master model. The
filename must match any name returned by getModelFilenames().
isOK (scalar logical) is false in case of errors.

3.5.4 Chrom Class Methods

analysisClassification()

function [isOK, outputStruct] = analysisClassification(modelFile, dataSetURIs)
Perform Classification of chromatograms.
modelFile (string) is the full path and filename of a PEAXACT model created and
saved with PEAXACT Chrom Builder.
dataSetURIs (string, or cell of strings) is the full path and filename of a data
file. It can also be a cell array of multiple filenames.
isOK (scalar logical) is false in case of errors.
outputStruct (scalar struct) is a result struct with fields:

 nDataSets (scalar double) is the number of processed data sets.

 dataSetURIs (nDataSets-by-1 cell of strings) is a cell array of URIs of all
processed data sets. This could differ from the input argument dataSetURIs if
some data sets haven't been processed.

 classificationCode (nDataSets-by-1 double) is a column vector with classifi-
cation codes for each processed data set.

 classificationText (nDataSets-by-1 cell of strings) is a cell array where
each element contains a string describing the result of classification.

 yDataBaselineCorrected (nDataSets-by-1 cell of *-by-1 double) is a cell
array where each element contains sample y-values after baseline correction.

 componentRetentionTimeShifts (nDataSets-by-1 cell of *-by-1 double) is a
cell array where each element contains retention time shifts for all model com-
ponents marked as "significant".

3 - APPLICATION PROGRAMMING INTERFACE (API) 34

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 missingComponentNames (nDataSets-by-1 cell of *-by-1 cell of strings) is
a cell array where each element again contains a cell array of model compo-
nent names which are missing in the reference sample.

 missingComponentRetentionTimes (nDataSets-by-1 cell of *-by-1 double) is
a cell array where each element contains retention times at which a model
component is missing. Elements in the vector of retention times correspond
to elements in the cell array of missingComponentNames.

 additionalComponentRetentionTimes (nDataSets-by-1 cell of *-by-1

double) is a cell array where each element contains retention times at which
an additional component is found.

3.6 Programming Examples

3.6.1 Using the .NET API in C#
This example demonstrates how to use the .NET API in C#. The program uses a calibrated
model to predict features from a measured sample.

Note: In Visual Studio, you have to reference the assemblies PEAXACT and MWArray
first. See Before You Start

using System;

using MathWorks.MATLAB.NET.Arrays;

namespace PEAXACT

{

 class PredictionExample

 {

 PEAXACT.Toolbox pxToolbox;

 static void Main(string[] args)

 {

 PredictionExample example = new PredictionExample();

 example.run();

 Console.WriteLine("Press any key to continue.");

 Console.ReadKey();

 }

 private PredictionExample()

 {

 // initialize Application Server

 pxToolbox = new PEAXACT.Toolbox();

 if (!(MWLogicalArray)pxToolbox.setLogger("DEBUG", "d:\\peaxact.log"))

 throwLastError();

 if (!(MWLogicalArray)pxToolbox.setLicense("c:\\peaxact\\license.lic"))

 throwLastError();

 if (!(MWLogicalArray)pxToolbox.initialize())

 throwLastError();

 }

 private void run()

 {

 loadModel("c:\\peaxact\\model.pxm");

 loadData("c:\\peaxact\\sample.xyz");

 predictFeatures();

3 - APPLICATION PROGRAMMING INTERFACE (API) 35

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 }

 private void loadModel(String modelFilename)

 {

 if (!(MWLogicalArray)pxToolbox.addModel(modelFilename))

 throwLastError();

 }

 private void loadData(String dataSetURI)

 {

 // This function demonstrates how to add data sets with known xy-data

 // Alternatively, you could pass a filename.

 Int32 nx = 800; // number of data points

 Double[] xData; // vector of x-data

 Double[] yData; // vector of y-data

 // populate xData and yData

 xData = new Double[nx];

 yData = new Double[nx];

 // ...

 // addDataSet() expects xData and yData to be column vectors. Because a

 // native 1D Double array would implicitly be casted to a row vector,

 // you should use one of the many MWNumericArray() constructors

 MWNumericArray xColumn = new MWNumericArray(nx, 1, xData);

 MWNumericArray yColumn = new MWNumericArray(nx, 1, yData);

 if (!(MWLogicalArray)pxToolbox.addDataSet(dataSetURI, x, y))

 throwLastError();

 }

 private void predictFeatures()

 {

 // This function demonstrates how to deal with multiple return values

 // and how to work with the MWStructArray

 MWArray[] varargout = pxToolbox.analysisPrediction(2); // 2 outputs

 Boolean isOK = (MWLogicalArray)varargout[0];

 if (!isOK) throwLastError();

 MWStructArray outputStruct = (MWStructArray)varargout[1];

 // convert some fields of the result struct to native types

 // conversion of numerical scalars using the ToScalarXXX() methods

 Int32 nDataSets =

((MWNumericArray)outputStruct.GetField("nDataSets")).ToScalarInteger();

 Int32 nFeatures =

((MWNumericArray)outputStruct.GetField("nFeatures")).ToScalarInteger();

 // conversion of double matrices using the ToArray method

 Double[,] values = (Double[,])outputStruct.GetField("x").ToArray();

 // you can also work with the MWArray type directly,

 // but keep in mind that indexing into MWArrays is 1-based

 MWCellArray mwDataSetURIs =

(MWCellArray)outputStruct.GetField("dataSetURIs");

 // conversion of cell arrays requires element-wise conversion

 MWCellArray mwFeatureNames =

(MWCellArray)outputStruct.GetField("featureNames");

 String[] names = new String[nFeatures];

 for (int i = 0; i < nFeatures; i++)

 names[i] = mwFeatureNames[1, i + 1].ToString(); // 1-based indexing

 // display results

 for (int i = 0; i < nDataSets; i++)

3 - APPLICATION PROGRAMMING INTERFACE (API) 36

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 {

 Console.WriteLine(mwDataSetURIs[1, i + 1]); // 1-based indexing

 for (int j = 0; j < nFeatures; j++)

 Console.WriteLine("{0} = {1}", names[j], values[i, j]);

 }

 }

 private void throwLastError()

 {

 throw new Exception(pxToolbox.getLastErrorMessage().ToString());

 }

 }

}

3.6.2 Using the COM API in VB.NET
This example demonstrates how to use the COM API in Visual Basic .NET by means of a
Wrapper class, which simply wraps COM function calls into VB code.

Note: In Visual Studio, you have to reference the COM DLL first. Also, you have to
set the reference's property Embeded Interop Type to False.

Public Class Wrapper

#Region "Properties"

 Private pxToolbox As PEAXACT.Toolbox

 Public ReadOnly Property lastErrorMessage As String

 Get

 lastErrorMessage = ""

 pxToolbox.getLastErrorMessage(1, lastErrorMessage)

 End Get

 End Property

#End Region

#Region "Methods"

 ' Initialize() demonstrates how to initialize PEAXACT

 Sub Initialize(ByVal logLevel As String, ByVal logFilename As String)

 If pxToolbox Is Nothing Then

 pxToolbox = CreateObject("PEAXACT.Toolbox")

 pxToolbox.setLogger(0, DBNull.Value, logLevel, logFilename)

 Dim isOK = False

 pxToolbox.initialize(1, isOK)

 If Not isOK Then Throw New Exception("Failed to initialize PEAXACT." _

 & Chr(13) & lastErrorMessage)

 End If

 End Sub

 ' RequireInitialization() assures that PEAXACT is initialized

 Private Sub RequireInitialization()

 Initialize("", "")

 End Sub

 ' AddModel() demonstrates how to add a model file

 Public Function AddModel(ByVal modelFilename As String) As Boolean

 RequireInitialization()

 AddModel = False

 pxToolbox.addModel(1, AddModel, modelFilename)

 End Function

3 - APPLICATION PROGRAMMING INTERFACE (API) 37

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 ' GetCalibratedFeatureNames() demonstrates how convert

 ' MATLAB cell array of strings into a native string array

 Public Function GetCalibratedFeatureNames() As String(,)

 RequireInitialization()

 Dim featureNames As Object(,) = {}

 GetCalibratedFeatureNames = {}

 pxToolbox.getCalibratedFeatureNames(1, featureNames)

 Dim featureNamesString(UBound(featureNames, 1) - 1, _

 UBound(featureNames, 2) - 1) As String

 For iRow As Integer = 1 To UBound(featureNames, 1)

 For iCol As Integer = 1 To UBound(featureNames, 2)

 featureNamesString(iRow - 1, iCol - 1) = _

 CStr(featureNames(iRow, iCol))

 Next

 Next

 GetCalibratedFeatureNames = featureNamesString

 End Function

 ' Predict() demonstrates how to call PEAXACT functions with

 ' optional input arguments and how to handle type MWStruct variables

 Function Predict(ByVal dataSetURI As String) As Double(,)

 RequireInitialization()

 Dim isOK As Boolean

 Dim outputStruct As New MWComUtil.MWStruct

 Predict = {}

 ' add data set

 pxToolbox.addDataSet(1, isOK, dataSetURI, DBNull.Value)

 Predict = {{-1}}

 If Not CBool(isOK) Then Exit Function

 ' predict features

 pxToolbox.analysisPrediction(2, isOK, outputStruct, DBNull.Value)

 Predict = {{-2}}

 If Not CBool(isOK) Then Exit Function

 ' convert results

 Predict = CType(outputStruct("x").Value, Double(,))

 End Function

#End Region

End Class

3.6.3 Using the COM API in VB Script
This example demonstrates how to call the PEAXACT Application Server from a Visual Basic
Script (VBS). VBS only supports the COM API. The script uses a model to classify two chro-
matograms and displays results. This example relies on implicit initialization of the Applica-
tion Server, because initialize() is not called explicitly.

Note: If you installed the 32 bit version of the Application Server on a 64 bit OS,
you need to run the script with a 32 bit version of wscript.exe, which can be
found at %windir%\SysWOW64\wscript.exe

' create instance of class PEAXACT.Chrom

Set pxChrom = CreateObject("PEAXACT.Chrom")

' create instance of utility class MWComUtil.MWStruct

Set outputStruct = CreateObject("MWComUtil.MWStruct7.14")

3 - APPLICATION PROGRAMMING INTERFACE (API) 38

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

' classify chromatograms according to model specifications

modelFile = "c:\model\file.pxm"

dataSetURIs(0) = "c:\data\chromatogram.csv#1"

dataSetURIs(1) = "c:\data\chromatogram.csv#2"

pxChrom.analysisClassification 2, isOK, outputStruct, modelFile, dataSetURIs

' display results

' Note: Indexing into VARIANT arrays returned by the Application Server is 1-based

nDataSets = outputStruct.Item(1, "nDataSets") ' = 2

URIs = outputStruct.Item(1, "dataSetURIs") ' = dataSetURIs

code = outputStruct.Item(1, "classificationCode")

text = outputStruct.Item(1, "classificationText")

For i = 1 To nDataSets

 Wscript.Echo "Classification of " & URIs(i) _

 & ": Code " & code(i) _

 & ", Description: " & text(i)

Next

4 - CUSTOM INTERFACES 39

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4 CUSTOM INTERFACES

4.1 OPUS Process

Note: A video on how to integrate the PEAXACT Application Server with OPUS
Process is published on the PEAXACT Blog.

4.1.1 Prerequisites

Software Requirements

 OPUS 6.5 or higher

 PEAXACT 3.6.0 or higher. A 32-bit installation is required!

OPUS 7 Workaround

The following workaround is necessary for OPUS version 7 to work with PEAXACT:

1) Open the Windows Explorer and open the OPUS installation directory
2) Rename file Calo.dll to Calo.dll_hidden or any other name, such that the file won't be

found be OPUS any more

Please note that this workaround disables OPUS support for Unscrambler.

Additional Files

These instructions refer to a special OPUS script file named PEAXACTComponentAnalysis.obs.
The file is used as a placeholder during set-up of an OPUS PROCESS scenario and does noth-
ing so far. The file is located at INSTALLDIR\DLL\OPUS.

4.1.2 OPUS Configuration
1) Run the diagnosis program first to test whether the PEAXACT Application Server (COM

API) is installed and registered correctly.
2) Configure a new OPUS PROCESS scenario file (.obs) with the OPUS scenario browser

a) Each measurement point requires a "No Evaluation" data channel for triggering the
measurement (must be the first data channel in each case).

b) Add data channels with data evaluation by script PEAXACTComponentAnalysis.obs
3) Modify the scenario script according to instructions in next Section
4) Run the process script in OPUS.
5) In case of errors: PEAXACT runtime errors are logged to the peaxactAppServer.log file

which is located in directory APPDATADIR (See note in Section 2).

4 - CUSTOM INTERFACES 40

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4.1.3 Modifying OPUS scenario file

Important Notes

 Set-up the whole OPUS PROCESS scenario first using the OPUS scenario browser.

 Run and test the scenario before making manual modifications to the scenario file.

 Once the scenario script is modified manually, the scenario should not be changed
with the OPUS scenario browser anymore because this would overwrite all manual
modifications. Again, make sure to finish all steps in the scenario browser first.

 Use the OPUS script editor (Menu File > Open > *.obs) to modify the scenario script
as follows below. If you copy and paste text from a PDF version of this document, copy
each page separately because this will preserve line breaks and also prevents from
copying headers and footers.

At the beginning of the script, after Option Explicit add:
' Added by S-PACT %%

Dim pxToolbox

Dim outputStruct

Dim isInitializedPEAXACT

isInitializedPEAXACT = False

' %%

At the beginning of sub-procedure Form_OnLoad() add:
' Added by S-PACT %%

MsgBox "Starting PEAXACT..."

Dim isOK, logLevel, logFilename

Set pxToolbox = CreateObject("PEAXACT.Toolbox")

Set outputStruct = CreateObject("MWComUtil.MWStruct7.14")

pxToolbox.setLogger 1, isOK, "exception", Null

pxToolbox.initialize 1, isOK

If NOT isOK Then

 MsgBox "Failed to initialize PEAXACT."

Else

 pxToolbox.getLogger 2, logLevel, logFilename

 If logLevel = "OFF" Then

 MsgBox "PEAXACT initialized." & Chr(13) & "Logging is OFF"

 Else

 MsgBox "PEAXACT initialized." & Chr(13) & "Logging to " & logFilename

 End If

 pxToolbox.addModel 1, isOK, "<modelFilename>"

 If NOT isOK Then MsgBox "Failed to add model." Else isInitializedPEAXACT = True

End If

' %%

Customize <modelFilename> to load your models

 Substitute <modelFilename> with the full path and filename of a PEAXACT model! For
instance, the line would then read:
pxToolbox.addModel 1, isOK, "C:\models\cyclohexaneModel.pxm"

 If you want to add more models, duplicate the pxToolbox.addModel line.

4 - CUSTOM INTERFACES 41

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

At the very end of the script, add:
' Added by S-PACT %%

Function PEAXACTAnalysis(ByVal typeOfAnalysis, ByVal block, ByVal Id)

 Dim vntResult, iPoint, nPoints, firstX, lastX, isOK, path, file, URI

 Dim xData(), yData(), yDataRow(0), varargin(2), fieldName, result

 result = -1 ' initialize result

 If isInitializedPEAXACT Then

 ' set some options and read data

 vntResult = Form.OpusRequest("BINARY")

 vntResult = Form.OpusRequest("FLOAT_MODE")

 vntResult = Form.OpusRequest("FLOATCONV_MODE ON")

 vntResult = Form.OpusRequest("DATA_POINTS")

 vntResult = Form.OpusRequest("READ_FROM_BLOCK " & block)

 vntResult = Form.OpusRequest("READ_PARAMETER PAT")

 path = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER NAM")

 file = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER NPT")

 nPoints = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER FXV")

 firstX = split(vntResult, chr(10))(1)

 vntResult = Form.OpusRequest("READ_PARAMETER LXV")

 lastX = split(vntResult, chr(10))(1)

 ' create xData

 ReDim xData(nPoints-1, 0) 'column vector

 For iPoint = 0 To nPoints-1

 xData(iPoint, 0) = CDbl(firstX + iPoint * (lastX-firstX)/(nPoints-1))

 Next

 ' read yData and convert to 2D array

 vntResult = Form.OpusRequestData("READ_DATA", yDataRow)

 ReDim Preserve yData(nPoints-1, 0)

 For iPoint = 0 To nPoints-1

 yData(iPoint, 0) = CDbl(yDataRow(iPoint+1)) 'yDataRow starts at index 1

 Next

 ' add data set

 URI = path & chr(92) & file & "#" & block & "-1"

 varargin(0) = xData : varargin(1) = yData : varargin(2) = "clear"

 pxToolbox.addDataSet 1, isOK, URI, varargin

 ' analysis

 If isOK Then

 Select Case UCase(typeOfAnalysis)

 Case "INTEGRATION"

 pxToolbox.analysisIntegration 2, isOK, outputStruct, Id

 fieldName = "A"

 Case "COMPONENTFITTING"

 pxToolbox.analysisComponentFitting 2, isOK, outputStruct, Id

 fieldName = "w"

 Case "PREDICTION"

 pxToolbox.analysisPrediction 2, isOK, outputStruct, Id

 fieldName = "x"

 Case "PREDICTIONOUTLIERPLS"

 pxToolbox.analysisPrediction 2, isOK, outputStruct, Id

 fieldName = "mahalanobisDistanceOutlierPValue"

 Case "PREDICTIONOUTLIERIHM"

 pxToolbox.analysisPrediction 2, isOK, outputStruct, Id

 fieldName = "RMSResidualsOutlierPValue"

 Case Else : MsgBox "Invalid typeOfAnalysis: " & typeOfAnalysis

 End Select

 If isOK Then result = outputStruct.Item(1, fieldName)

 End If

 End If

 PEAXACTAnalysis = vbLf & vbLf & CStr(result) ' set output

End Function

' %%

4 - CUSTOM INTERFACES 42

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Search and replace placeholder script

 Press CTRL+F3 to open the text search dialog

 Search for PEAXACTComponentAnalysis.obs (ignore any matches found in the first line)

 A matching line should start with vntResult = Form.OpusRequest("VBScript

 Replace the whole line by

' Modified by S-PACT %%%

vntResult = PEAXACTAnalysis("<typeOfAnalysis>", "<block>", "<componentName>")

' %%

 Substitute <typeOfAnalysis> with one of the following types:

 integration – calculation of peak area; requires an integration model

 componentFitting – calculation of component weight; requires a hard model

 prediction – prediction of feature value; requires a calibration model

 predictionOutlierPLS – calculates the probability (p-value) for a spectral outlier
towards a PLS model; requires a PLS calibration

 predictionOutlierIHM – calculates the probability (p-value) for a spectral outlier
towards an IHM model; requires an IHM calibration

 Substitute <block> with the desired file block, e.g. AB

 Substitute <componentName> depending on your choice of <typeOfAnalysis>:

 integration: substitute with the name of an integration range

 componentFitting: substitute with the name of a component model

 prediction, predictionOutlierPLS, predictionOutlierIHM: substitute with the
name of a calibrated feature. Be careful not to accidentally use names of integra-
tion ranges or component models. Calibrated feature names can be found in the
model summary report:

 For instance, the line would now read:
vntResult = PEAXACTAnalysis("prediction", "AB", "Cyclohexane")

Note: <componentName> can also be the component's index. The index is consecu-
tively numbered across all added models. For instance, the line would read:
vntResult = PEAXACTAnalysis("prediction", "AB", 1)

Do not enclose the index in double quotes! Use the index instead of the name when
multiple components have identical names.

 Repeat this step until all occurrences of PEAXACTComponentAnalysis.obs are replaced.

4 - CUSTOM INTERFACES 43

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4.2 HoloPro

4.2.1 Prerequisites

Software Requirements

 HoloPro 3.2.0.6 or higher (expected to be installed in directory C:\Holopro)

 PEAXACT 3.5 or higher. A 32-bit installation is required.

4.2.2 Configuration
1) Run the diagnosis program first to test whether the PEAXACT Application Server (COM

API) is installed and registered correctly.
2) Start HoloPro and open the Channel Settings (menu Settings > Acquisition Setup)

3) Tick Multivariate in the Data Analysis Settings Panel, then click the Multivariate Predic-
tion Setup button

4) At the top of the In the next window, select a channel, then click the Add Components
button

4 - CUSTOM INTERFACES 44

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

5) From the Method Type list select New Custom Method and enter PEAXACT (or select
PEAXACT if it has already been added before). It may take a while until the PEAXACT is
added to the list, but from then on it will be available permanently.

Note: Optionally, after step 5, you may click the Setup button in order to change
PEAXACT logging options. In case of unexpected errors you should change the
logging level to DEBUG and read the log file.

4 - CUSTOM INTERFACES 45

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

6) Browse for a calibrated model file and select components. Close with OK.

7) You can add more components from other models to the same channel, or you can add
components to other channels by repeating steps 4 to 6.

Note: In step 6, you can also browse for a PEAXACT session file in order to load
multiple models from the session.

8) After closing all setup windows with OK you may start measuring. The prediction of fea-
ture values takes place after each measurement. Results will be displayed in the main win-
dow of HoloPro.

5 - TROUBLE SHOOTING 46

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

5 TROUBLE SHOOTING

Problems with the COM API

Symptoms
You cannot access the PEAXACT COM API from your third-party application.

Resolution
In case of any problems with the PEAXACT COM API you should try the following

1) Run the diagnosis program

After starting the program it performs several tests. In case of errors a possible solution is
suggested. You have to fix all problems before you can use the interface correctly.

2) Under some circumstances the diagnosis program crashes (throwing a Windows error)
when the COM DLL is registered incorrectly. If this happens, you have to register the DLL
manually by executing the file

INSTALLDIR\DLL\COM\register.bat

Note that administrator privileges are required to execute the file. Afterwards, run the
diagnosis again.

Problems with the HoloPro Custom Interface

Symptoms
You receive an error when trying to add PEAXACT as new Custom Method in HoloPro.

Resolution
In case of problems with the HoloPro Custom Interface you should try the following

1) Run the diagnosis program

After starting the program it performs several tests. In case of errors a possible solution is
suggested. You have to fix all problems before you can use the interface correctly.

2) Under some circumstances the diagnosis program crashes (throwing a Windows error)
when the custom interface DLL is registered incorrectly. If this happens, you have to reg-
ister the DLL manually by executing the file

INSTALLDIR\DLL\HoloPro\register.bat

Note that administrator privileges are required to execute the file. Afterwards, run the
diagnosis again.

	Contents
	1 Quick Start
	1.1 What is PEAXACT Application Server?
	1.2 Getting Help
	User Manual
	Technical Support
	Blog

	1.3 Installation
	1.3.1 System Requirements
	1.3.2 Licensing
	1.3.3 Installation
	Step 1: Before You Install
	Step 2: Install PEAXACT
	Step 3: After Installation

	1.4 License Activation
	Step 1: Find out the computer’s Host ID
	Step 2: Request license file
	Step 3: Activate license

	1.5 Before You Start
	1.5.1 COM Component
	1.5.2 .NET Component

	2 Input and Output Files
	2.1 License File
	2.2 Log File

	3 Application Programming Interface (API)
	3.1 Introduction
	3.2 Calling Conventions
	3.2.1 COM Component
	Functions with inputs only (no output)
	Functions with outputs
	Functions with mutable inputs and outputs

	3.2.2 .NET Component
	Single output interface
	Standard interface
	Mutable inputs and outputs

	3.3 Data Conversion Rules
	3.3.1 COM Component
	Conversion from COM to MATLAB
	Conversion from MATLAB to COM

	3.3.2 .NET Component
	Conversion from .NET to MATLAB
	Conversion from MATLAB to .NET

	3.4 MATLAB Utility Library
	3.4.1 COM Component
	MWStruct Class
	MWField Class
	Example: Processing a MATLAB struct type in Visual Basic 6

	3.4.2 .NET Component
	MWArray Class

	3.5 Class Reference
	3.5.1 Class Design
	Singleton Class Instance
	Exception Handling

	3.5.2 Common Methods
	initialize()
	isInitialized()
	getLastErrorMessage()
	getLogger()
	setLicense()
	setLogger()
	terminate()
	testFunctionIO()

	3.5.3 Toolbox Class Methods
	activateSession()
	newSession()
	removeSession()
	addDataSet()
	addModel()
	analysisPeakSearch()
	analysisMCR()
	analysisHMFA()
	analysisComponentFitting()
	analysisIntegration()
	analysisPrediction()
	getCalibratedFeatureNames()
	getComponentNames()
	getIntegrationRangeNames()
	getDataSetURIs()
	getModelFilenames()
	getModelInfo()
	nDataSets()
	nModels()
	removeDataSet()
	removeModel()

	3.5.4 Chrom Class Methods
	analysisClassification()

	3.6 Programming Examples
	3.6.1 Using the .NET API in C#
	3.6.2 Using the COM API in VB.NET
	3.6.3 Using the COM API in VB Script

	4 Custom Interfaces
	4.1 OPUS Process
	4.1.1 Prerequisites
	Software Requirements
	OPUS 7 Workaround
	Additional Files

	4.1.2 OPUS Configuration
	4.1.3 Modifying OPUS scenario file
	Important Notes
	At the beginning of the script, after Option Explicit add:
	At the beginning of sub-procedure Form_OnLoad() add:
	Customize <modelFilename> to load your models
	At the very end of the script, add:
	Search and replace placeholder script

	4.2 HoloPro
	4.2.1 Prerequisites
	Software Requirements

	4.2.2 Configuration

	5 Trouble Shooting
	Problems with the COM API
	Problems with the HoloPro Custom Interface

